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1. Answer any five questions : 2×5=10

(a) Distinguish between double integral and repeated integral.

(b) Show that 
2n n

r n r r
 

   
, where r xi yj zk  


.

(c) Show that 


 is a vector perpendicular to the surface  , ,x y z c  , where c is a

constant.

(d) Write down the formula for the evaluation of length of a curve. Justify it.

(e) Show that  

2

2 2, 0
lim
x y

x y
x y


  does not exist.

P.T.O.



(f) Find the equation of the tangent plane to the surface   2 2, sinf x y x y xy    at

the point (0, 2, 4).

(g) Find the surface area of a sphere by using surface of revolution.

(h) If A


 and B


 are irrotational, show that A B
 

 is irrotational.

2. Answer any four questions : 5×4=20

(a) State and prove the Schwartz’s theorem for the equality of xyf  and yxf  at some

point (a, b) of the domain of definition of f (x, y).

(b) Express 
cos 22

0 0

x
dx x dy



   as a double integral and evaluate it.

(c) Prove      . . . .F G F G F G G F G F         
             

, where F


 and G


 are

differentiable vector function.

(d) Find  ,
R

f x y dxdy , over the region R bounded by 
1
3x y  and x y  where

  4 2,f x y x y  .

(e) What is the maximum directional directional derivative of   2 2, xg x y y e  at

(2, –1) and in the direction of what unit vector does it occur?

(f) Let f and g be twice differentiable functions of one variable and let

     ,u x t f x ct g x ct     for a constant c. Show that 
2 2

2
2 2
u uc
t x

 
 

.

3. Answer any three questions : 10×3=30

(a) (i) Find the minimum value of 2 2 2x y z   subject to the constaint

 1 0, 0, 0ax by cz a b c      .

(ii) Show that    
1

2 2 2 2, , , ,f x y z x y z


  is harmonic. 8+2

P.T.O.

(   2   )



(b) (i) Let z be a differentiable function of x and y and let cos , sinx r y r    ,

Prove that 
2 2 2 2

2 2 2 2 2
1 1z z z z z
r rr r x y

           . 7

(ii) Prove that  
3 3

,,
0,

x y
x yf x y x y
x y

    
 

 is not continuous at (0, 0). 3

(c) (i) Prove that    22 2

32 log3
22

dxdydz

x y z
  

   , extended over the sphere

2 2 2 1x y z   .

(ii) Using a double integral, prove that the relation    ,
m n

B m n
m n

 
 

,

m, n > 0. 5+5

(d) (i) Verify Stoke’s theorem for the function 2F x i xyj 


 integrated round the

square in the plane z = 0 and bounded by the lines x = 0, y = 0, x = a, y

= a.

(ii) Prove that    2 2 2 42 2 8a a x y x y dxdy a        , the region of

integration being the interior of the circle  2 2 22 2x y a x y a    . 6+4

(e) (i) Evaluate · 2ˆ. ; 2S A n ds A yi zj x k    over the surface S of the bounded

by the parabolic cylinder 2 8y x , in the first octant bounded by the plane

y = 4 and z = 6. 7

(ii) Find the directional derivative of   2, 2 5f x y x xy    at (1, 1) in the

direction of unit vector  3 4,
5 5

 . 3

(   2   )
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Answer any four questions. 4�15

1. (a) Let � �
x y xy

y xf x y

xy

1 1
sin sin , 0;

,

0, 0.

� � ��
� �
� �	

Show that at (0,0) the double limit exists but the repeated limits do

not exist.
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(b) Let � �
2 2

2 2

2 2

2
, 0;

,

0, 0.

xy
x y

x yf x y

x y

� � ��
�� �

�
� �	

Prove that f is a continuous function of either variable when the other

variable is given a fixed value. Is f continuous at (0, 0)? Justify.

(c) If u = f(x,y), where x r y rcos , sin ;� 
 � 
  prove that

(i) 

22 2 2

2

1
;

u u u u

x y r r

� �   � � � � � �� � �� �� � � � � �   
� � � � � �� �

(ii) 
2 2 2 2

2 2 2 2 2

1 1u u u u u

r rx y r r

    
� � � �

   

. 4+4+7

2. (a) When is a function f(x,y) said to be differentiable at a point (x,y) ?

State the sufficient condition for differentiability of (x,y).

Verify the sufficient condition for differentiability of the following

function

� �

x y x y
x y

f x y x x y
x

y x y
y

x y

2 2

2

2

1 1
sin sin , 0, 0;

1
, sin , 0, 0;

1
sin , 0, 0;

0, 0, 0.

�
�
� � � �
�
��

� � ��
�
�

� ��
�
� � �	

(b) Let � �
4 4

, ;
,

0,  .

x y
x y

f x y x y

x y

� �
��

� ��
� �	
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Show that 
f

x




 and 
f

y


  exist at (0,0). Examine the continuity of f(x,y)

at (0, 0).

(c) If H be a homogeneous function in x and y of degree n having

continuous first order partial derivatives and � � � �2 2 2,
n

u x y x y
�

� � , show

that 0
u u

H H
x x y y

� �   � � � �� �� �   � � � �
. 6+4+5

3. (a) Let  � �
� � � �

� � � �

2

4 2
, , 0,0 ;

,

0, , 0,0 .

x y
x y

f x y x y

x y

�
��

� ��
� �	

Show that f has a directional derivative at (0,0) in any direction

� � 2 2, ,  1l m l m� � � � , but f is discontinuous at (0, 0).

(b) If a function f(x,y) defined in a certain domain D of the xy-plane where

� �,a b D�  be such that both the partial derivatives 
f

x




 and 
f

y



  exist in

some neighbourhood of (a,b) and both 
f

x




 and 
f

y



  are differentiable

at (a,b), then prove that fxy (a,b) = fyx (a,b).

(c) For the function � �
� � � �

� � � �

2 2

2 2
, , 0,0 ;

,

0, , 0,0 ;

x y
x y

f x y x y

x y

�
��

� ��
� �	

show that � � � �0,0 0,0xy yxf f� . 4+6+5

4. (a) Prove that the volume of the greatest rectangular parallelepiped that

can be inscribed in the ellipsoid 
2 2 2

2 2 2

8
1    

3 3

x y z abc
is

a b c
� � � .



C/21/BSC/4th Sem/MTMH–C9T

4

(b) Find the stationary points of � � 2 2 2, ,f x y z x y z�  subject to the condition

2 2 2 2x y z a� � �  (x, y, z are positive).

(c) Show that � � 2 2 2 1

50400
x y z x y z dx dy dz� � ����  taken throughout the

tetrahedron bounded by three coordinate planes and x + y + z = 1.

5+4+6

5. (a) If E be the region bounded by the circle 2 2 2 2 0x y ax by� � � � , show that

� � � � � �
3

2 2 2
2

2 2  
3

E

x a x y b y dx dy a b
�

� � � � �∬ .

(b) Prove that 
V

dx dy dz

x y z
2

2 2

  3
2 log 3

21

2

� �� � �� �
� �� �� � �� �

� �

���

where V = � � 3 2 2 2{ , , : 1}x y z x y z� � � �� . 7+8

6. (a) In which direction from the point (1,3,2), the directional derivative of

22xz y� � �  is maximum ? What is the magnitude of this maximum ?

(b) Is there a differentiable vector function v
�  such that curl v r�

� � ? Justify

it. Show that 2

r
E

r
�
�

�

 is irrotational. Find � such that E � ���
� �

 and such

that � � 0a� �  where a > 0.

(c) If � �2 2 2 34 3 2 2A xy x z i x j x z k� � � �
� � ��

, prove that 
C

A dr�
� �
�  is independent of the

curve C joining two given points.

Is A dr
� �
�  an exact differential ? If yes, then solve the differential

equation 0A dr �
� �
� . 3+6+6
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7. (a) Prove � �2 21n nr n n r �� � � , where n is a constant, ,r x i y j z k r r� � � �
� � �� � .

(b) Prove that if 

2

1

P

P

F dr�
� �
�  is independent of the path joining any two points

P1 and P2 in a given region, then 0F dr �
� �
��  for all closed paths in the

region and conversely.

(c) Verify Green’s theorem in the plane for

� � � �
C

x y dx y xy dy2 23 8 4 6� � �� , where C is the boundary of the region

enclosed by : 2,y x y x� � 5+4+6

8. (a) Show that � �3 2 22 3F xy z i x j xz k� � � �
� � ��

 is a conservative force field.

Find the scalar potential. Also evaluate the work done in moving an

object in this field from (1,-2,1) to (3,1,4).

(b) Prove 
5 35

VS

r n dS r rdV� ���
� �∬ , where ,r x i y j z k r r� � � �

� � �� � .

(c) Evaluate by Stokes’ theorem 

C

z dx x dy y dzsin  cos  sin  � �� , where C is the

boundary of the rectangle : 0 ,0 1, 3x y z� � � � � � . 6+5+4




















