
(f) Find the equation of the tangent plane to the surface $f(x, y)=x^{2}+y^{2}+\sin x y$ at the point $(0,2,4)$.
(g) Find the surface area of a sphere by using surface of revolution.
(h) If \vec{A} and \vec{B} are irrotational, show that $\vec{A} \times \vec{B}$ is irrotational.
2. Answer any four questions :
(a) State and prove the Schwartz's theorem for the equality of $f_{x y}$ and $f_{y x}$ at some point (a, b) of the domain of definition of $f(x, y)$.
(b) Express $\int_{0}^{\frac{\pi}{2}} d x \int_{0}^{\cos x} x^{2} d y$ as a double integral and evaluate it.
(c) Prove $\vec{\nabla} \times(\vec{F} \times \vec{G})=\vec{F}(\vec{\nabla} \cdot \vec{G})-\vec{F} \cdot \vec{\nabla} \vec{G}+\vec{G} \cdot \vec{\nabla} \vec{F}-\vec{G}(\vec{\nabla} \cdot \vec{F})$, where \vec{F} and \vec{G} are differentiable vector function.
(d) Find $\iint_{R} f(x, y) d x d y$, over the region R bounded by $x=y^{\frac{1}{3}}$ and $x=\sqrt{y}$ where $f(x, y)=x^{4}+y^{2}$.
(e) What is the maximum directional directional derivative of $g(x, y)=y^{2} e^{2 x}$ at $(2,-1)$ and in the direction of what unit vector does it occur?
(f) Let f and g be twice differentiable functions of one variable and let $u(x, t)=f(x+c t)+g(x-c t)$ for a constant c. Show that $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$.
3. Answer any three questions :
(a) (i) Find the minimum value of $x^{2}+y^{2}+z^{2}$ subject to the constaint $a x+b y+c z=1(a \neq 0, b \neq 0, c \neq 0)$.
(ii) Show that $f(x, y, z)=\left(x^{2}, y^{2}, z^{2}\right)^{-\frac{1}{2}}$ is harmonic.
(b) (i) Let z be a differentiable function of x and y and let $x=r \cos \theta, y=r \sin \theta$, Prove that $\frac{\partial^{2} z}{\partial r^{2}}+\frac{1}{r} \frac{\partial z}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} z}{\partial \theta^{2}}=\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}$.
(ii) Prove that $f(x, y)=\left\{\begin{array}{cl}\frac{x^{3}+y^{3}}{x-y}, & x \neq y \\ 0, & x=y\end{array}\right.$ is not continuous at $(0,0)$.
(c) (i) Prove that $\iiint \frac{d x d y d z}{x^{2}+y^{2}+(z-2)^{2}}=\pi\left(2-\frac{3}{2} \log 3\right)$, extended over the sphere $x^{2}+y^{2}+z^{2} \leq 1$.
(ii) Using a double integral, prove that the relation $B(m, n)=\frac{\Gamma m \Gamma n}{\Gamma(m+n)}$, $\mathrm{m}, \mathrm{n}>0$.
(d) (i) Verify Stoke's theorem for the function $\vec{F}=x^{2} i-x y j$ integrated round the square in the plane $z=0$ and bounded by the lines $x=0, y=0, x=a, y$ $=a$.
(ii) Prove that $\iint\left[2 a^{2}-2 a(x+y)-\left(x^{2}+y^{2}\right)\right] d x d y=8 \pi a^{4}$, the region of integration being the interior of the circle $x^{2}+y^{2}+2 a(x+y)=2 a^{2} . \quad 6+4$
(e) (i) Evaluate $\iint_{s} \bar{A} \cdot \hat{n} d s ; \bar{A}=2 y i-z j+x^{2} k$ over the surface S of the bounded by the parabolic cylinder $y^{2}=8 x$, in the first octant bounded by the plane $y=4$ and $z=6$.
(ii) Find the directional derivative of $f(x, y)=2 x^{2}-x y+5$ at $(1,1)$ in the direction of unit vector $\left(\frac{3}{5},-\frac{4}{5}\right)$.

বিদ্যাসাগর বিশ্ববিদ্যালয়

VIDYASAGAR UNIVERSITY

B.Sc. Honours Examination 2021

(CBCS)

4th Semester

MATHEMATICS

PAPER-C9T

MULTIVARIATE CALCULUS

Full Marks : 60
Time : 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any four questions.
4×15

1. (a) Let $f(x, y)=\left\{\begin{array}{c}x \sin \frac{1}{y}+y \sin \frac{1}{x}, x y \neq 0 ; \\ 0, x y=0 .\end{array}\right.$

Show that at $(0,0)$ the double limit exists but the repeated limits do not exist.
(b) Let $f(x, y)=\left\{\begin{array}{c}\frac{2 x y}{x^{2}+y^{2}}, x^{2}+y^{2} \neq 0 ; \\ 0, x^{2}+y^{2}=0 .\end{array}\right.$

Prove that f is a continuous function of either variable when the other variable is given a fixed value. Is f continuous at (0,0)? Justify.
(c) If $u=f(x, y)$, where $x=r \cos \theta, y=r \sin \theta$; prove that
(i) $\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}=\left(\frac{\partial u}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial u}{\partial \theta}\right)^{2}$;
(ii) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}$.
2. (a) When is a function $f(x, y)$ said to be differentiable at a point (x, y) ?

State the sufficient condition for differentiability of (x, y).
Verify the sufficient condition for differentiability of the following function

$$
f(x, y)=\left\{\begin{array}{c}
x^{2} \sin \frac{1}{x}+y^{2} \sin \frac{1}{y}, x \neq 0, y \neq 0 \\
x^{2} \sin \frac{1}{x}, x \neq 0, y=0 \\
y^{2} \sin \frac{1}{y}, x=0, y \neq 0 \\
0, x=0, y=0
\end{array}\right.
$$

(b) Let $f(x, y)=\left\{\begin{array}{c}\frac{x^{4}+y^{4}}{x-y}, x \neq y ; \\ 0, x=y .\end{array}\right.$

Show that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at $(0,0)$. Examine the continuity of $f(x, y)$ at $(0,0)$.
(c) If H be a homogeneous function in x and y of degree n having continuous first order partial derivatives and $u(x, y)=\left(x^{2}+y^{2}\right)^{-n / 2}$, show that $\frac{\partial}{\partial x}\left(H \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(H \frac{\partial u}{\partial y}\right)=0$.
3. (a) Let $f(x, y)=\left\{\begin{array}{c}\frac{x^{2} y}{x^{4}+y^{2}},(x, y) \neq(0,0) \text {; } \\ 0,(x, y)=(0,0) .\end{array}\right.$

Show that f has a directional derivative at $(0,0)$ in any direction $\beta=(l, m), l^{2}+m^{2}=1$, but f is discontinuous at $(0,0)$.
(b) If a function $f(x, y)$ defined in a certain domain D of the xy-plane where $(a, b) \in D$ be such that both the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist in some neighbourhood of (a,b) and both $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are differentiable at (a, b), then prove that $f_{x y}(a, b)=f_{y x}(a, b)$.
(c) For the function $f(x, y)=\left\{\begin{array}{c}\frac{x^{2} y^{2}}{x^{2}+y^{2}},(x, y) \neq(0,0) \text {; } \\ 0,(x, y)=(0,0) ;\end{array}\right.$ show that $f_{x y}(0,0)=f_{y x}(0,0)$. $4+6+5$
4. (a) Prove that the volume of the greatest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ is $\frac{8 a b c}{3 \sqrt{3}}$.
(b) Find the stationary points of $f(x, y, z)=x^{2} y^{2} z^{2}$ subject to the condition $x^{2}+y^{2}+z^{2}=a^{2}(x, y, z$ are positive $)$.
(c) Show that $\iiint(x+y+z) x^{2} y^{2} z^{2} d x d y d z=\frac{1}{50400}$ taken throughout the tetrahedron bounded by three coordinate planes and $x+y+z=1$. $5+4+6$
5. (a) If E be the region bounded by the circle $x^{2}+y^{2}-2 a x-2 b y=0$, show that

$$
\iint_{E} \sqrt{x(2 a-x)+y(2 b-y)} d x d y=\frac{2 \pi}{3}\left(a^{2}+b^{2}\right)^{\frac{3}{2}}
$$

(b) Prove that $\iiint_{V} \frac{d x d y d z}{x^{2}+y^{2}+\left(z-\frac{1}{2}\right)^{2}}=\pi\left(2+\frac{3}{2} \log 3\right)$
where $V=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2} \leq 1\right\}$.
6. (a) In which direction from the point $(1,3,2)$, the directional derivative of $\phi=2 x z-y^{2}$ is maximum ? What is the magnitude of this maximum ?
(b) Is there a differentiable vector function \vec{v} such that curl $\vec{v}=\vec{r}$? Justify it. Show that $\vec{E}=\frac{\vec{r}}{r^{2}}$ is irrotational. Find ϕ such that $\vec{E}=-\vec{\nabla} \phi$ and such that $\phi(a)=0$ where $a>0$.
(c) If $\vec{A}=\left(4 x y-3 x^{2} z^{2}\right) \hat{i}+2 x^{2} \hat{j}-2 x^{3} z \hat{k}$, prove that $\int_{C} \vec{A} \cdot d \vec{r}$ is independent of the curve C joining two given points.
Is $\vec{A} \cdot d \vec{r}$ an exact differential ? If yes, then solve the differential equation $\vec{A} \cdot d \vec{r}=0$.

$$
3+6+6
$$

7. (a) Prove $\nabla^{2} r^{n}=n(n+1) r^{n-2}$, where n is a constant, $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}, r=|\vec{r}|$.
(b) Prove that if $\int_{P_{1}}^{P_{2}} \vec{F} \cdot d \vec{r}$ is independent of the path joining any two points P_{1} and P_{2} in a given region, then $\oint \vec{F} \cdot d \vec{r}=0$ for all closed paths in the region and conversely.
(c) Verify Green's theorem in the plane for
$\oint_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$, where C is the boundary of the region enclosed by : $y=\sqrt{x}, y=x^{2}$ $5+4+6$
8. (a) Show that $\vec{F}=\left(2 x y+z^{3}\right) \hat{i}+x^{2} \hat{j}+3 x z^{2} \hat{k}$ is a conservative force field. Find the scalar potential. Also evaluate the work done in moving an object in this field from $(1,-2,1)$ to $(3,1,4)$.
(b) Prove $\iint_{S} r^{5} \hat{n} d S=\iiint_{V} 5 r^{3} \vec{r} d V$, where $\vec{r}=x \hat{i}+\hat{y} \hat{j}+\hat{z k}, r=|\vec{r}|$.
(c) Evaluate by Stokes' theorem $\oint_{C} \sin z d x-\cos x d y+\sin y d z$, where C is the boundary of the rectangle : $0 \leq x \leq \pi, 0 \leq y \leq 1, z=3 . \quad 6+5+4$

B.Sc. (Honours)

4th Semester Examination

MATHEMATICS

Paper - C9T

(Multivariate Calculus)
Full Marks : 60
Time : 3 Hours
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
Illustrate the answers wherever necessary.

Unit - I

1. Answer any three questions :

(a) Show that the limit exists at the origin but the repeated limit does not, for the function

$$
f(x, y)=\left\{\begin{array}{cc}
x \sin \frac{1}{y}+y \sin \frac{1}{x}, x y \neq 0 \\
0 & , x y=0
\end{array}\right.
$$

(b) For $F(x, y)=x^{4} y^{2} \sin ^{-1} \frac{y}{x}$ show that

$$
x \frac{\partial F}{\partial x}+y \frac{\partial F}{\partial y}=6 F
$$

(c) Define directional derivative of the function $f(x, y)$ at the point (a, b). Obtain partial derivative as a special case of it.
(d) Is $f(x, y)=|y|(1+x)$ differentiate at $(0,0)$?
(e) Find the maximum or minimum value of

$$
f(x, y)=x^{3}+y^{3}-3 a x y
$$

2. Answer any one question :
(a) State and prove sufficient condition for differentiability of a function $f(x, y)$ at a point (a, b).
(b) Let $(a, b) \in D$, the domain of definition of f. If $f_{x}(a, b)$ exist and $f_{y}(x, y)$ is continuous at (a, b) then show that $f(x, y)$ is differentiable at (a, b).
(a) (i) Find the shortest distance from the origin to the hyperbola $x^{2}+8 x y+7 y^{2}=225, z=0$.
(ii) If z be a differentiable function of x and y and if $x=c \cosh (u) \cos (v), y=c \sin h v$ $\sin v$ then prove that

$$
\begin{align*}
& \frac{\partial^{2} z}{\partial u^{2}}+\frac{\partial^{2} z}{\partial v^{2}}=\frac{1}{2} c^{2}(\cosh 2 u-\cos 2 v) \\
& \left(\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}\right)
\end{align*}
$$

(b) (i) Define total differential of a function $f(x, y, z)$.
Approximate the change in the hypotenuse of a right angled triangle whose sides are 6 and 8 cm , when the shorter side is lengthened by $\left(\frac{1}{4} \mathrm{~cm}\right)$ and the longer is shortened by $\left(\frac{1}{8} \mathrm{~cm}\right)$.
(ii) Prove that the volume of the greatest rectangular parallelopiped, that can be inscribed in the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$,
is $\frac{8 a b c}{3 \sqrt{3}}$.
$(2+3)+5$

Unit - II
4. Answer any two questions :
2×2
(a) Let

$$
f(x, y)=\left\{\begin{array}{l}
\frac{1}{2}, y=\text { rational } \\
x, y=\text { irrational }
\end{array}\right.
$$

verify whether $\int_{0}^{1} d y \int_{0}^{1} f(x, y) d x$ exists or not.
(b) Evaluate $\int_{0}^{\infty} \frac{\sin r x}{x} d x$ from $\int_{0}^{\infty} \int_{0}^{\infty} e^{-x y} \sin r x d x d y$ with the help of change of order of integration.
(c) Evaluate $\iint_{R}\left(x^{2}+y^{2}\right) d x d y$ over the region R bounded by $x y=1, y=0, y=x, x=2$.
5. Answer any two questions :
(a) Show in a diagram the field of integration of the
integral $\int_{0}^{1}\left(\int_{x}^{1 / x} \frac{y d y}{(1+x y)^{2}\left(1+y^{2}\right)}\right) d x$ and by
changing the order of integration, show that the value of the integral is $\frac{\pi-1}{4}$.
(b) Are the two iterated integrals $\int_{1}^{\infty} d x \int_{1}^{\infty} \frac{x-y}{(x+y)^{3}} d y$ and $\int_{1}^{\infty} d y \int_{1}^{\infty} \frac{x-y}{(x+y)^{3}} d x$ equal? Justify your answer.
(c) Evaluate
$\iiint_{E} \sqrt{a^{2} b^{2} c^{2}-b^{2} c^{2} x^{2}-a^{2} c^{2} y^{2}-a^{2} b^{2} z^{2}} d x d y d z$
where E is the region bounded by the ellipsoid
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.

Unit - III

6. Answer any three questions :
(Symbols have their usual meaning)
(a) Find the total work done in moving a particle in a force field given by

$$
F=(2 x-y+z) \hat{i}+(x+y-z) \hat{j}+(3 x-2 y-5 z) \hat{k}
$$

along a circle C in the $x y$-plane $x^{2}+y^{2}=9$, $z=0$.
(b) Evaluate the vector line integral $\int_{C} \vec{F} \times d \vec{x}$ where
$\vec{F}=Z \hat{i}$ and C is the part of the circular helix $\vec{x}=b \cos t \hat{i}+b \sin t \hat{j}+c t \hat{k}$ between the points $(-b, 0, \pi c)$ and $(b, 0,0)$.
(c) Prove that $\vec{\nabla} \cdot\left[r \vec{\nabla}\left(\frac{1}{r^{3}}\right)\right]=3 r-4$, where \vec{r} is the position vector and $r=|\vec{r}|$
(d) Find the equation of the tangent plane to the surface $x y z=4$ at the point $(1,2,2)$.
(e) If $\Delta \phi=\left(2 x y z^{3}, x^{2} z^{3}, 3 x^{2} y z^{2}\right)$ and

$$
\phi(1,-2,2)=4 \text {, find the function } \phi \text {. }
$$

7. Answer any one question :
(a) (i) If $\vec{\nabla} \cdot \vec{E}=0, \vec{\nabla} \cdot \vec{H}=0, \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{H}}{\partial t}$ and

$$
\begin{aligned}
& \vec{\nabla} \times \vec{H}=\frac{\partial \vec{E}}{\partial t}, \text { then show that } \\
& \nabla^{2} \vec{H}=\frac{\partial^{2} \vec{H}}{\partial t^{2}} \text { and } \nabla^{2} \overrightarrow{\mathrm{E}}=\frac{\partial^{2} \overrightarrow{\mathrm{E}}}{\partial \mathrm{t}^{2}}
\end{aligned}
$$

(ii) Let $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}, r=|\vec{r}|$ and $f(x)$ is a scalar function possessing first and 2 nd order derivatives prove that

$$
\nabla^{2} f(x)=\frac{d^{2} f}{d r^{2}}+\frac{2}{r} \frac{d f}{d r}
$$

If $\nabla^{2} f(r)=0$, show that $f(r)=A+\frac{B}{r}$ where A and B are arbitrary constants.
(b) (i) Prove that

$$
\vec{\nabla} \times(\vec{\nabla} \times \vec{A})=\vec{\nabla}(\vec{\nabla} \cdot \vec{A})-\vec{\nabla}^{2} \vec{A}
$$

(ii) Let $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ and $r=|\vec{r}|$.

If $f(r)=\log r$ and $g(r)=1 / r, r \neq 0$. Satisfy $2 \vec{\nabla} f+h(r) \vec{\nabla} g=0$ then find $h(r)$.

Unit - IV

8. Answer any two questions :
(a) Evaluate
$\int_{S}\left(x^{2} d y d z+y^{2} z d z d x+2 z(x y-x-y) d x d y\right)$
where S is the surface of the cube

$$
0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1
$$

(b) Show that $\iint_{S} \vec{r} . d \vec{s}=3 v$ where v is the volume
enclosed by the closed surface S and \vec{r} has its usual meaning.
(c) (i) State Green's theorem in the plane.
(ii) If S be any closed surface enclosing a volume V and $\vec{F}=x \hat{i}+2 y \hat{j}+3 z \hat{k}$, prove that $\iint_{S} \vec{F} \cdot \hat{n} d s=6 V$.

9. Answer any one question :

(a) Evaluate $\iint_{S} \vec{F} \cdot \hat{n} d S$, where
$\vec{F}=x \hat{i}-y \hat{j}+\left(z^{2}-1\right) \hat{k}, S$ is the surface of the region bounded by $x^{2}+y^{2}=4, z=0, z=4$ in the first octant.
(b) Verify Green's theorem in the plane for $\oint\left(x y+y^{2}\right) d x+x^{2} d y$ where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$.

